- redhat.

Performance Tuning best pracitces

and performance monitoring with
Zabbix

Andrew Nelson
Senior Linux Consultant

May 28, 2015
NLUUG Conf, Utrecht, EHERGE

Overview

Introduction

Performance tuning Iis Science!

A little Law and some things to monitor
Let's find peak performance
Conclusion

Source code availability
Test environment information

2147 RED HAT | Andrew Nelson

Q redhat.

$ whoami

» Andrew Nelson
* anelson@redhat.com
» Senior Linux Consultant with Red Hat North America

» Active in the Zabbix community for approxmately 10
years .

- Known as “nelsonab” in |
forums and IRC

» Author of the Zabbix API
Ruby library zbxapi

3/47 RED HAT | Andrew Nelson Q redhat.

mailto:anelson@redhat.com

rformance Tuning
- and SCIENCE!

Performance tuning and the Scientific Method

Performance tuning is similar to the Scientific method

Define the problem

State a hypothesis

Prepare experiments to test the hypothesis
Analyze the results

Generate a conclusion

5/47 RED HAT | Andrew Nelson ‘ redhat.

Understanding the problem

Performance tuning often involves a multitude of
components

dentifying problem areas is often challenging

Poorly defined problems can be worse than no
oroblem at all

These are not (necessarily)
the solutions you want.

6/47 RED HAT | Andrew Nelson

Q redhat.

Understanding the problem

Why?
Better utilization of resources
Capacity Planning and scaling

For tuning to work, you must define your problem
But don't be defined by the problem.

You can't navigate
somewhere when you don't
know where you're going.

7/47 RED HAT | Andrew Nelson ‘ redhat.

Defining the problem

Often best when phrased as a declaration with a
reference

Poor Examples

“The disks are too slow”
“It takes too long to log In”
“It's Broken!”

Good Examples

“Writes for files ranging in size from X to Y must take less than
N seconds to write.”

“Customer Login's must take no longer than .5 seconds”

“The computer monitor is dark and does not wake up when
moving the mouse”

8/47 RED HAT | Andrew Nelson ‘ redhat.

Define your tests

Define your tests and ensure they are repeatable

Poor Example (manually run tests)
1$ time cp one /test_dir

2% time cp two /test_dir

Good Example (automated tests with parsable output)
$ run_test.sh
Subsystem A write tests

Run Size Time (seconds)
1 100KB ©.05
2 S00KB 0.24

3 1MB 0.47

9/47 RED HAT | Andrew Nelson ‘ redhat.

Define your tests

A good test is comprised to two main components

It is representative of the problem
It has easy to collate and process output.
Be aware of external factors

Department A owns application B which is used by
group C but managed by department D.

Department D may feel that application B is too difficult to
support and may not lend much assistance placing department
A in a difficult position.

10/47 RED HAT | Andrew Nelson ‘ redhat.

Perform your tests

Once the tests have been agreed upon get a set of
baseline data

Log all performance tuning changes and annotate all
tests with the changes made

If the data is diverging from the goal, stop and look
closer

Was the goal appropriate?

Where the tests appropriate?

Were the optimizations appropriate?

Are there any external factors impacting the effort?

11/47 RED HAT | Andrew Nelson ‘ redhat.

Perform your tests and DOCUMENT!

When the goal is reached, stop
Is there a need to go on?
Was the goal reasonable?

Were the tests appropriate?

Were there any external issues not accounted for or
foreseen?

DOCUMENT DOCUMENT DOCUMENT

If someone ran a test on a server, but
did not log it, did it really happen?

12/47 RED HAT | Andrew Nelson ‘ redhat.

When testing, don't forget to...

DOCUMENT!

13/47 RED HAT | Andrew Nelson ‘ redhat.

Story time!

Client was migrating from Unix running on x86 to
RHELS running on x86

Client claimed the middleware stack they were using
was “slower” on RHEL

Some of the problems encountered

Problem was not clearly defined
There were some external challenges observed
Tests were not representative and mildly consistent

End goal/performance metric “evolved” over time

Physical CPU clock speed was approximately 10%
slower on newer systems

14/47 RED HAT | Andrew Nelson ‘ redhat.

More Story time!

Client was migrating an application from zOS to RHEL
6 with GFS2

Things were “slow” but there was no consistent
guantification of “slow”.

Raw testing showed GFS2 to be far superior to NFS,
but Developers claimed NFS was faster.

Eventually GFS2 was migrated to faster storage,
developers became more educated about performance
and overall things are improved.

Developers are learning to quantify the need for
something before asking for it.

15/47 RED HAT | Andrew Nelson ‘ redhat.

A Ilttle Law and some thln sto
| monltor |

Little's Law

L=Ah
L = Queue length
h = Time to service a request
A=arrival rate

Networking provides some good examples of Little's
Law In action.

MTU (Maximum Transmission Unit) and Speed can be
analogous to lambda.

The Bandwidth Delay Product (BDP) is akin to L,
Queue length

17147 RED HAT | Andrew Nelson ‘ redhat.

Little's Law

BDP is defined as: Bandwidth * End _To End_Delay (or
latency)

Example
1GB/s Link with 2.24ms Round Trip Time (RTT)

1Gb/s * 2.24ms = 0.27MB

Thus, a buffer of at least 0.27MB is required to buffer all
of the data on the wire.

18/47 RED HAT | Andrew Nelson ‘ redhat.

Little's Law

What happens when we alter the MTU? nbound

9000 o
6,000 Packets per second
939.5MB/s

1500 IEEEEEEEE:HEEEERE?JEE;ZZ?KM
6,000 Packets per second 900
898.5MB/s

150 Outbound

Packets

22,000 Packets per second
493MB/s

19/47 RED HAT | Andrew Nelson ‘ redhat.

Little's law In action.

There are numerous ways to utilize Little's law In

monitoring.

20/47

1O requests in flight for disks
Network buffer status
Network packets per second.
Processor load

Time to service a request

RED HAT | Andrew Nelson

Q redhat.

Little's law In action.

Apache is the foundation for many enterprise and SAS
products, so how can we monitor it's performance in
Zabbix?

Normal approaches involved parsing log files, or
parsing the status page

The normal ways don't tend to work well with Zabbix,
however we can use a script to parse the logs In
realtime from Zabbix and use a file socket for data
output.

21/47 RED HAT | Andrew Nelson ‘ redhat.

Little's law In action.

Two pieces are involved in pumping data from Apache
iInto Zabbix.

First we build a running counter via a log pipe to a
script

YYYYMMDD-HHMMSS Path BytesReceived BytesSent TimeSpent
MicrosecondsSpent

LogFormat "%{%Y%m%d-%H%M%S}t %U %I %0 %T %D" zabbix-log

CustomLog "|$/var/lib/zabbix/apache-log.rb >>var/lib/zabbix/errors"
zabbix-1log

This creates a file socket:

$ cat /var/lib/zabbix/apache-data-out
Count Received Sent total time total microsedonds

4150693 573701315 9831930078 0 335509340

22147 RED HAT | Andrew Nelson ‘ redhat.

Little's law In action.

Zabbix_sender

$ crontab -e

And import the template

23/47

apache (15 Items)
Apache Bytes Received
Apache Bytes Sent
Apache Miliseconds Per Connection
Apache Received Bytes Per Connection
Apache Second per Connection
Apache Sent Bytes Per Connection
Apache Total Miliseconds spent
Apache Total Seconds spent

Download spead for scenario "Load Main Page".

Dovnload speed for step "Main Page" of scenari...

Failed step of scenaric "Load Main Page".

Response code for step "Main Page" of scenari...

Response time for step "Main Page" of scenario...

Total Apache Treads

URL Count

29 Aug
29 Aug
29 Aug
259 Aug
29 Aug
29 Aug
29 Aug
29 Aug
29 Aug
29 Aug
29 Aug
29 Aug
29 Aug
29 Aug

29 Aug

2014

2014

2014

2014

2014

2014

2014

2014

2014

2014

2014

2014

2014

2014

2014

12:44:39

12:44:39

12:44:39

12:44:39

12:44:39

12:44:39

12:44:39

12:44:39

12:45:27

12:45:27

12:45:27

12:45:27

12:45:27

12:45:27

12:44:39

RED HAT | Andrew Nelson

*/1 * * * * /var/lib/zabbix/zabbix_sender.sh

151 B
151 B
128 ms

151 B

151 B

128 ms

o}

91.15 KBps
91.15 KBps
o}

200

2.Bms

21

233 ms

+33 ms

+46.15 KBps

+46.15 KBps

Next we push that data via a client side script using

Graph
Graph
Graph
Graph
Graph
Graph
Graph
Graph
Graph
Graph
Graph
Graph
Graph
Graph

Graph

0 redhat.

Let's see if we can find the peak
performance with Zabbix.

"

X

v /_b)
%/r)
”

e
] /ﬂf

The test environment

Hypervisor 2
(Sherri)

Hypervisor 1
(Terry)

Physical System
(desktop)

Storage
Server

Router/Firewall
100Mbit

Infiniband

Zabbix Server NOTE: See last slides for more details

25/47 RED HAT | Andrew Nelson Q redhat.

What are we looking for

It is normal to be somewhat unsure initially,
iInvestigative testing will help shape this.

Some form of saturation will be reached, hopefully on
the server.

Saturation will take one or both of the following forms

Increased time to service

Request queues (or buffers) are full, meaning overall
Increased time to service the queue

Failure to service

Queue is full and the request will not be serviced. The server
will issue an error, or the client will time out.

26/47 RED HAT | Andrew Nelson ‘ redhat.

Finding Peak Performance, initial test

Test Window
load-server.lab: URL count per Second (1h)
Tests were run from o
1 1 600 'I,I
system “Desktop e i
200 f I||
/
Apache reports 800 oL
connections per second. R N B
) last rmin avg m.;:
M URL count per Second [alll 0.0169 00164 24744 71458
. - load-server.lab: CPU load (1h)
Processor load is light.
0.03
0.02
0.01
Dﬂ- [} T4l [} [Ty) [} [Ta) [[T s} [} ﬂ-:}
) last min) EY
M Processor load (1 min average per core) lavg] 0]
M Processor load (15 min average per core) [avg] 0 0 0.00

27147 RED HAT | Andrew Nelson ‘ redhat.

Finding Peak Performance, initial test

Network shows a
plateau, but not
saturation on the client.

Plateau Is smooth In
appearance

Neither of the two cores
appears very busy.

Test Window

load-server.lab: Network traffic on eth0 (1h)

10 Mbps T T 10.49 Kpps
5 Mbps 5.24 Kpps
0 bps + -0 pps
S 0" R @m o m =% % a4 w 2 & = 3
i & &8 8 & &8 &8 8 § £ &g g B
last rmin avg
B Incoming network traffic on ethD [awvgl] 931 Kbps B873Kbps 105Mbps
B Cutgoing network traffic on etho [avg] 7.82Kbps 7.57 Kbps 3.39 Mbps
[Incoming Packets per second on eth0 [avg]l 1282 pps 11.95pps 142 Kpps
M Outgoing Packets per second on eth0 [avg]l 1159 pps 11.3Zpps 1.38 Kpps

load-server.lab: CPU utilization (1h)

100 %

o %%

5:144

05:20

08.090

B CPU idle time

B CPL user time

Bl CPU system time
E CPU iowait time
B CPL nice time

B CPU interrupt time
[CPU softirg time
[CPU steal time

05:25

05:30

[awvg]
[awg]
[awg]
[awvg]
[awg]
[awvg]
[awg]
[awvg]

05:35

s g

= =
last

9962 %

0.04 %%

0.06 %o

0.24 %%

0 %%

0 %

0.0083 %%

0.0083 %

05:50
05:55
06:00

min
91.68 %
0.03 %%
0.05 %
0.16 %%
0 %
0 %%
0 %
0 %

o,
<G

o
o
AN ORWEW

0&:05

ool oowm

ORKN @ON

06:10

-
=
=
o
[=)
=
m
%% 99
o 3
%o 2;
% 1:4
%o
% 0
¥ 1.1
% 0.4

28/47 RED HAT | Andrew Nelson

Q redhat.

Finding Peak Performance, initial test

Apache server seems to
report that it responds
faster with more
connections

Zabbix web tests show

Test Window
Ic:ad—s,eﬁrver.lab: Apache Miliseconds Per Connection (1h)
140 ms
120 ms
100 ms | - [
|
80 ms | |
3 ___M'“H-ﬂ_'_"'
60 ms ll'lu__ﬁ
40 ms £
5 08 @ omom 3 % @ @ & = 3
5 & & & & & & & B N E
= =
last rmin e
M Apache Miliseconds Per Connection [alll 110ms 5456 ms 88

load-serverlab: Response time for step "Main Page" of scenario "Load Main Page". (1h)

. 30ms

lat |
Increased latency /J\;l
10ms s ||

= . A -

0 >
5 8 A omom o3 3 & i E=
8 & 8 8 8 8 & 8 £ 8 &
[Response time for step "Main Page" of scenario "Load Main Page". [al
29/47 RED HAT | Andrew Nelson ‘ redhat.

Finding Peak Performance, initial test

 The actual data from Jmeter

» Appearance of smooth steps and plateau

M jp@gc - Active Threads Over Time = Owerall Active Threads (x10)

M jp@gc - Response Times Over Time = Owverall Response Times

M jp@gc - Transactions per Second = Successful Transactions per Second
500

450
400

350

-
100
30

8]
05:48:01 05:50:26 05:52:51 05:55:17 05%:57:42 05:00:08 08:02:33 06:04:59 06:07:24 06:09:50 06:12:15
Elapsed time

30/47 RED HAT | Andrew Nelson Q redhat.

Finding Peak Performance, Initial analysis

Reduced response latency may be due to processor
cache.

Connections are repetitive potential leading to greater
cache efficiency.

Network appears to be the bottleneck.

During tests some Zabbix checks were timing out to the
test server and other systems behind the firewall/router

Router showed very high CPU utilization.
Jmeter does not show many connection errors.

Network layer Is throttling connections

31/47 RED HAT | Andrew Nelson ‘ redhat.

Finding Peak Performance, Initial analysis

More testing needed

Tests need to come from a system on the same VLAN
and switch as the server and not traverse the router.

A wise man once said:

| need a little more Cowbell
(aka testing)

32/47 RED HAT | Andrew Nelson ‘ redhat.

Finding Peak Performance, second test

33/47

Testing from another
VM with full 1Gb links to
test server

Based on concurrent
connections count, it
seems an upper limit
has again been found.

Graph is not smooth at
plateau

CPU exhibits greater
load, but overall still low

RED HAT | Andrew Nelson

Test Window
Igadﬁewer.lab: URL count per Second (1h)
3K
i LT IIIII 'ﬁ"l
2K Y \ S |
£ |
_IJ
1K |
f’; |
;. [
0 L
5 8 8 8 B § 8% 8 /B 2 8 & %
I T = = T T~ = T = = = L T
= =} =] (=] (=] =] =] (=] (=] = o =] =]
P ©

last min avg max
[URL count per Second [alll 0.0167 0.0164 77859 258K

load-server.lab: CPU load (1h)

0.15]
0.10
0.05
04 ¥ N
S 8 & R B 8§ 8 8 84 £ 8 2 %
(V=T = R = R = DN = R = R+ I = N T - . B
= =} (=} [=] =} (=] L= =} (=} =] (=] L= =)
o o
last min ay
M Processor load (1 min average per core) [avg] 0 0 0032
B Processor load (15 min average per core) [avg] 0 o 0.00

0 redhat.

Finding Peak Performance, second test

Network no longer
appears to be the
bottleneck

Rough “saw-tooth”
plateau noted

CPU Utilization follows
picture of load, but it
would seem there is still
CPU capacity left.

34/47

Test Window

load-server.lab: Network traffic on eth0 (1h)

&0 Mbps T T 31.46 Kpps
40 Mbps 20.97 Kpps
20 Mbps 10.49 Kpps
0 bps + -0 pps
=+ [=] T3] [=] 5] [=] [T5] [=] 5] [=] T3] (=) =
— ™~ ™ [} " =1 =t [T} [T} =] (=] — —
It o o o o o o Ira} o P = ~ P
= =} =} =} =} =] =] =} =} o =} (=] o
[=3] (53]
=] (=]
= w
= =
last rmin ava
B Incoming network traffic on ethD [avg] 93 Kbps 872 Kbps 3.07 Mbps
B Cutgoing network traffic on eth0 [avg] 7.84Kbps 7.52Kbps 10.42 Mbps
Ol Incoming Packets per second on eth0 [avg] 1235 pps 1200 pps 4.03 Kpps
E outgoing Packets per second on eth0 [avgl 12.53 pps 11.4 pps 3.94 Kpps
load-server.lab: CPU utilization (1h)
100 %
50 %
0% __
5 8 ¥ 8 ¥ %8 27 8 ®w 8 8 S %
el [F=1 [Fa} [fa]} [F=1 w =} [Fe] [Fa — - [—
=1 [=1 [=1 [=1 [=1 =1 (=1 (=1 =1 = (=1 (=1 =
last rmin avg max
[l CFU idle time [awg] 9953 % 7457 % 9241 % 9965
W CPL user time [avgl 0.03 % 0D.03 % 3.22 % 10.62
Il CPL system time [awval 0.07 % 0.04 % 2.31 % 7.59
@ CFU iowait time [awg] 0.35 % 0.23 % 0.63 % 1.57
Il CPU nice time [awg] 0 %% 0 % 0 % (W}
B CPU interrupt time [avg]l 0 % 0 % 0 %]
[0 CPU softirg time [awvagl 0.0083 % 0 % 1.39 % 4.85
[CPU steal time [awg] 0 % 0 % 0.04 % 0.24

RED HAT | Andrew Nelson

Q redhat.

Finding Peak Performance, second test

Apache again appears
to respond faster under
load than when idle

Reduced latency shows
smooth appearance

Zabbix tests do not show
any change in Apache
performance. The router
IS back to “normal” load.

35/47 RED HAT | Andrew Nelson

Test Window

load-server.lab: Apache Miliseconds Per Connection (1h)
200 ms
150 ms

100 ms | i 3

1
50 m \e= [
0ms b

9D O®" 5 o373 B # &8 &5 B = &2 &85 49

B i i] i =N i 1= I = B

= =} =} [=] =} =] o =} =} = [=] = =}

o o

last min a

M Apache Miliseconds Per Connection [alll 26 ms 49.55ms 834

Iu:nau:l-ser-.rer.lal:-!; Response tirne for step "Main Page" of scenario "Load Main Page". (1h)

7ms
Bms !
|I|
5ms - I
I n |
AW '“'|)l A
4ms [R | L A e
TW WA lL,-‘ WO
3ms {>
— [} [T} [} [Ty (=] 1) [} T3] [=] [T} (=] —
— ™ ™ m m = = n in =] =] = —
o M M [Fa] [Ta] [T [Fs] Vs Ta] e~ [M~ e
= [=] [=] =] [=] =] =] [=] =] =] [] L= =]
5] =]

[Response time for step "Main Page" of scenario "Load Main Page". [al

0 redhat.

Finding Peak Performance, second test

Steps are smooth and uneventful below 1200 TPS.

Wild TPS graph above 1200 is due to connection errors

Jmeter graph above 1200TPS does not appear coherent with
Zabbix graphs.

B jp@gc - Active Threads Over Time = Overall Active Threads (x100)

M jp@gc - Response Times Over Time = Overall Response Times (x10)

W jp@gc - Transactions per Second = Successful Transactions per Second
4 000
3 600

- —
I T L
i

g4 e pur.mii;h re[h II ! !‘lf!llilﬂri 'ﬂ'! !”

o*
06:47:589 06:50:24 06:52:48 06:55:15 06:57:40 07:00:06 O07:02:31 O07:04:57 07:07:22 07:09:48 07:12:13
Elapsed time

— i

\

36/47 RED HAT | Andrew Nelson Q redhat.

Finding Peak Performance, Second analysis

It would appear reduced response latency is likely due
to to processor cache as noted before.

Increased rate of repetitiveness reduced latency further.
Network did not appear to be the bottleneck

Connection errors were noted in Jmeter tests as would
be expected for a saturated server.

Based on Jmeter and Zabbix data peak performance
for this server with the test web page is about 1,200
pages per second

What if we couldn't max out performance, are there
other ways to find it?

37/47 RED HAT | Andrew Nelson ‘ redhat.

One more story...

Host was a member of a 16 node GFS2 Cluster

Java containers were running on the host which pre-
allocated memory.

vm.swappiness was setto 0

OS had about 200MB of memory available for itself
and appeared to spend 100% of one core's time in 10

walilt.

39/47 RED HAT | Andrew Nelson ‘ redhat.

One more story...

40/47

100 %

50 %

0%

03:30 PM
03:35 PM

=
o
[}
e
"
=
"
—
—-—
L
=

03:40 PM

M % of idle CPU time
M % of user CPU time
W % of system CPU time

03:45 PM
03:50 PM

CPU utilization (2h)

= 5T E E E FE E E E E = E E E E
o g oo oo oo o oo o o g oo
u [T TR o T TN o TN T o N o TN T TR o TR T O o BT | i
Mo DN MmM TR RN S O
P A B S T e B e
DWDDDDDDDDDDD'—"'S
[) []
last min avg max

l[awvgl 96% 39% 7151% 96%
[avg] 1% 1% 139% 10 %
[avg] 1% 1% 16 % 5 %

05:10 PM
05:15 PM

0513 05:22 PM

e
15.58 GE 15.58 GA
10 GE 10 GE
5 GE
0B <4 H=0 B
= = F EFE E X EFE F E EE E EEEEEEZEZ=EEE =
= 0O O OO O Opgooono o a oo oo oo o oo =
N RRS95AS52984888398483833 3
4 BDEBnEsisds85888385898 4
(i} [ig]
— —
) :)
= last min avg TMax
O Available Real Size l[avg] ©5398MB 4963MB 54459 MB 55438 MB
M Total RAM Buffered [avg] 271 ME 160 KB 121 ME 562 MB
M Total Cached Memory [avg] 80.85 ME 51 ME 6464 ME 10377 ME
M Available Swap Size [avg] 3.8 GB 3.8 GB 3.81 GB 382 GB

RED HAT | Andrew Nelson

Q redhat.

One more story...

I - ©)
8 Kblocks/s
B Kblocks(s ﬁ I
4 Kblocks/s VA l‘""“““’"“”“’ﬁ\k || i
2 Kb|DE kS,an ‘L'-J'_‘ll.lul LJM-JWJ"" \ jﬁ\. ||l
e S T T EIEFEEIEIIEEECEEEEE © I <-- o (20
L ©o o o oo o oo oo oo oo oo o g o oooa o g 60 KB
O A A T = = T O S I =T = s B
m 0888833333333 333833ndg838 4 40 KB i
i [na] |
= = 20 KB |
= last min av = maj 'L
M 10 Received [avg]l 13.46 blocks/s 0.5283 blocks/s 2.26 Kblocks/s 5.67 Kb 0B+ = - = —>
| 10 Sent lavgl 324 blocks/s 30.09 blocks/s 4859 blocks/s 483.85b £t EEEEEEZEEZEEEEEEEEEEEEE Z
= O T == T T B O T R O O ™ = = s B
] 8833833333333333335383 ol
. I o St for sda (21)
3 MB 307.2 8 last min avg max S
B Avg Memory swapped in [awg] OB OB 8.53B 1KB
2 Mg 204 .8 B Avg Memory swapped out [avg]l 0B 0B 3584E 41KE
1 MB 102.4
0B 0
= = E EFE E EFE E 5 E E E E E E E E E E E 5 E E E =
o O O oooopooonDoaoeooDoooocp o o o 0
NmmIdnbssddRannzsiabsead O
QSSSSSS@%%E%E%EEEE%QSESQ
" "
S last min aw ma
M Bytes per second read from sda [avg] 357KB 0B 11 MB 2.84
[Bytes per second written to sda [awvg] 151KB 1455KB 2409KB 4062
B Read requests per second from sda [avg]l 0.2471] 29.95 12
B Write requests per second to sda [avgl] 186 1.76 2.46

41/47

RED HAT | Andrew Nelson

Q redhat.

Conclusion

Clearly define the problem
Understand what the tests are before testing

It Is possible to use similar techniques to tuning for
long term monitoring

Sometimes the results you get are not what you
expected.

Software developers are bad at exposing performance
metrics for use by external software.

DOCUMENT, DOCUMENT, DOCUMENT!

42147 RED HAT | Andrew Nelson ‘ redhat.

Questions

. jautajumi
ragen vragen
NMTaHHA
BOMPOCHI
, otazk
pytania =15 y
preguntas
spgrgsmal domande
kysymykset
43/47 RED HAT | Andrew Nelson

Q redhat.

Source Code

Scripts and template used are available on GitHub
https://github.com/red-tux/zbx-apache

44/47 RED HAT | Andrew Nelson ‘ redhat.

The test environment (More details)

Hypervisor 2
(Sherri)

Hypervisor 1
(Terry)

Physical System
(desktop)

Storage
Server

Router/Firewall
100Mbit

Infiniband

Zabbix Server

45/47 RED HAT | Andrew Nelson Q redhat.

The test environment (More details)

Hypervisors are Red Hat Virtualization 3.3 (RHEV)

Guests are RHELG
Test server is configured with 2GB of RAM and 2 CPU cores

Storage for guests is via ISCSI over Infiniband

Switch and Firewall are small Enterprise grade Juniper
equipment.

Main Router/Firewall has 100Mbit interfaces

All networks are VLANed
Hypervisors are LACP bonded to the internal network

46/47 RED HAT | Andrew Nelson ‘ redhat.

The test environment (More details)

Test page Is a simple “Hello world” with a small
embedded graphic. Two connections equals one page
load.

Apache was configured to use the aforementioned
logging script

JMeter was used to generate the client test loads

Zabbix was configured perform a web test as well to
track response times from the Zabbix server.

47147 RED HAT | Andrew Nelson ‘ redhat.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

