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Overview

● Introduction

● Performance tuning is Science!

● A little Law and some things to monitor

● Let's find peak performance

● Conclusion

● Source code availability
● Test environment information 
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$ whoami

● Andrew Nelson

● anelson@redhat.com

● Senior Linux Consultant with Red Hat North America

● Active in the Zabbix community for approximately 10 
years

● Known as “nelsonab” in 
forums and IRC

● Author of the Zabbix API
Ruby library zbxapi

mailto:anelson@redhat.com


  

Performance Tuning
and SCIENCE!
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Performance tuning and the Scientific Method

● Performance tuning is similar to the Scientific method
● Define the problem
● State a hypothesis
● Prepare experiments to test the hypothesis
● Analyze the results
● Generate a conclusion
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Understanding the problem

● Performance tuning often involves a multitude of 
components

● Identifying problem areas is often challenging

● Poorly defined problems can be worse than no 
problem at all

These are not (necessarily) 
the solutions you want.
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Understanding the problem

● Why?
● Better utilization of resources
● Capacity Planning and scaling

● For tuning to work, you must define your problem
● But don't be defined by the problem.

You can't navigate 
somewhere when you don't 
know where you're going.
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Defining the problem

● Often best when phrased as a declaration with a 
reference

● Poor Examples
● “The disks are too slow”
● “It takes too long to log in”
● “It's Broken!”

● Good Examples
● “Writes for files ranging in size from X to Y must take less than 

N seconds to write.”
● “Customer Login's must take no longer than .5 seconds”
● “The computer monitor is dark and does not wake up when 

moving the mouse”
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Define your tests

● Define your tests and ensure they are repeatable
● Poor Example (manually run tests)

1 $ time cp one /test_dir

2 $ time cp two /test_dir

● Good Example (automated tests with parsable output)
$ run_test.sh

Subsystem A write tests

Run    Size       Time (seconds)

1      100KB      0.05

2      500KB      0.24

3        1MB      0.47
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Define your tests

● A good test is comprised to two main components

a)It is representative of the problem

b)It has easy to collate and process output.
● Be aware of external factors

● Department A owns application B which is used by 
group C but managed by department D.

● Department D may feel that application B is too difficult to 
support and may not lend much assistance placing department 
A in a difficult position.
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Perform your tests

● Once the tests have been agreed upon get a set of 
baseline data

●  Log all performance tuning changes and annotate all 
tests with the changes made

● If the data is diverging from the goal, stop and look 
closer

● Was the goal appropriate?
● Where the tests appropriate?
● Were the optimizations appropriate?
● Are there any external factors impacting the effort?
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Perform your tests and DOCUMENT!

● When the goal is reached, stop
● Is there a need to go on?
● Was the goal reasonable?
● Were the tests appropriate?
● Were there any external issues not accounted for or 

foreseen?

● DOCUMENT DOCUMENT DOCUMENT

If someone ran a test on a server, but 
did not log it, did it really happen?
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When testing, don't forget to...

DOCUMENT!
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Story time!

● Client was migrating from Unix running on x86 to 
RHEL5 running on x86

● Client claimed the middleware stack they were using 
was “slower” on RHEL

● Some of the problems encountered
● Problem was not clearly defined

● There were some external challenges observed

● Tests were not representative and mildly consistent
● End goal/performance metric “evolved” over time
● Physical CPU clock speed was approximately 10% 

slower on newer systems
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More Story time!

● Client was migrating an application from zOS to RHEL 
6 with GFS2

● Things were “slow” but there was no consistent 
quantification of “slow”.

● Raw testing showed GFS2 to be far superior to NFS, 
but Developers claimed NFS was faster.

● Eventually GFS2 was migrated to faster storage, 
developers became more educated about performance 
and overall things are improved.

● Developers are learning to quantify the need for 
something before asking for it.



  

A little Law and some things to 
monitor
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Little's Law

● L=λh
● L = Queue length
● h = Time to service a request
● λ=arrival rate

● Networking provides some good examples of Little's 
Law in action.

● MTU (Maximum Transmission Unit) and Speed can be 
analogous to lambda.

● The Bandwidth Delay Product (BDP) is akin to L, 
Queue length
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Little's Law

● BDP is defined as: Bandwidth * End_To_End_Delay (or 
latency)

● Example
● 1GB/s Link with 2.24ms Round Trip Time (RTT)
● 1Gb/s * 2.24ms = 0.27MB
● Thus, a buffer of at least 0.27MB is required to buffer all 

of the data on the wire.
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Little's Law

● What happens when we alter the MTU?

● 9000
● 6,000 Packets per second
● 939.5MB/s

● 1500
● 6,000 Packets per second
● 898.5MB/s

● 150
● 22,000 Packets per second
● 493MB/s

9000

1500

150

Outbound 
Packets

Inbound
Packets
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Little's law in action.

● There are numerous ways to utilize Little's law in 
monitoring.

● IO requests in flight for disks
● Network buffer status
● Network packets per second.
● Processor load
● Time to service a request
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Little's law in action.

● Apache is the foundation for many enterprise and SAS 
products, so how can we monitor it's performance in 
Zabbix?

● Normal approaches involved parsing log files, or 
parsing the status page

● The normal ways don't tend to work well with Zabbix, 
however we can use a script to parse the logs in 
realtime from Zabbix and use a file socket for data 
output.
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Little's law in action.

● Two pieces are involved in pumping data from Apache 
into Zabbix.

● First we build a running counter via a log pipe to a 
script
# YYYYMMDD-HHMMSS Path BytesReceived BytesSent TimeSpent 
MicrosecondsSpent

LogFormat "%{%Y%m%d-%H%M%S}t %U %I %O %T %D" zabbix-log

CustomLog "|$/var/lib/zabbix/apache-log.rb >>var/lib/zabbix/errors" 
zabbix-log

● This creates a file socket:
$ cat /var/lib/zabbix/apache-data-out

Count Received Sent total_time  total_microsedonds

4150693 573701315 9831930078 0 335509340
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Little's law in action.

● Next we push that data via a client side script using 
Zabbix_sender
$ crontab -e

*/1 * * * * /var/lib/zabbix/zabbix_sender.sh

● And import the template



  

Let's see if we can find the peak 
performance with Zabbix
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The test environment

Storage 
Server 

Physical System
(desktop)

Infiniband

GigE

Router/Firewall
100Mbit 

Hypervisor 1
(Terry)

Hypervisor 2
(Sherri)

Zabbix Server NOTE: See last slides for more details
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What are we looking for

● It is normal to be somewhat unsure initially, 
investigative testing will help shape this.

● Some form of saturation will be reached, hopefully on 
the server.

● Saturation will take one or both of the following forms
● Increased time to service

● Request queues (or buffers) are full, meaning overall 
increased time to service the queue

● Failure to service
● Queue is full and the request will not be serviced.  The server 

will issue an error, or the client will time out.
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Finding Peak Performance, initial test

● Tests were run from 
system “Desktop”

● Apache reports 800 
connections per second.

● Processor load is light.

Test Window
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Finding Peak Performance, initial test

● Network shows a 
plateau, but not 
saturation on the client.

● Plateau is smooth in 
appearance

● Neither of the two cores 
appears very busy.

Test Window
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Finding Peak Performance, initial test

● Apache server seems to 
report that it responds 
faster with more 
connections

● Zabbix web tests show 
increased latency

Test Window
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Finding Peak Performance, initial test

● The actual data from Jmeter
● Appearance of smooth steps and plateau
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Finding Peak Performance, Initial analysis

● Reduced response latency may be due to processor 
cache.

● Connections are repetitive potential leading to greater 
cache efficiency.

● Network appears to be the bottleneck.
● During tests some Zabbix checks were timing out to the 

test server and other systems behind the firewall/router
● Router showed very high CPU utilization.

● Jmeter does not show many connection errors.
● Network layer is throttling connections
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Finding Peak Performance, Initial analysis

● More testing needed
● Tests need to come from a system on the same VLAN 

and switch as the server and not traverse the router.
● A wise man once said:

I need a little more Cowbell 
(aka testing)
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Finding Peak Performance, second test

● Testing from another 
VM with full 1Gb links to 
test server

● Based on concurrent 
connections count, it 
seems an upper limit 
has again been found.

● Graph is not smooth at 
plateau

● CPU exhibits greater 
load, but overall still low

Test Window
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Finding Peak Performance, second test

● Network no longer 
appears to be the 
bottleneck

● Rough “saw-tooth” 
plateau noted

● CPU Utilization follows 
picture of load, but it 
would seem there is still 
CPU capacity left.

Test Window
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Finding Peak Performance, second test

● Apache again appears 
to respond faster under 
load than when idle

● Reduced latency shows 
smooth appearance

● Zabbix tests do not show 
any change in Apache 
performance.  The router 
is back to “normal” load.

Test Window
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Finding Peak Performance, second test

● Steps are smooth and uneventful below 1200 TPS.
● Wild TPS graph above 1200 is due to connection errors

● Jmeter graph above 1200TPS does not appear coherent with 
Zabbix graphs.
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Finding Peak Performance, Second analysis

● It would appear reduced response latency is likely due 
to to processor cache as noted before.

● Increased rate of repetitiveness reduced latency further.
● Network did not appear to be the bottleneck

● Connection errors were noted in Jmeter tests as would 
be expected for a saturated server.

● Based on Jmeter and Zabbix data peak performance 
for this server with the test web page is about 1,200 
pages per second

● What if we couldn't max out performance, are there 
other ways to find it?



  

Conclusion
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One more story...

● Host was a member of a 16 node GFS2 Cluster

● Java containers were running on the host which pre-
allocated memory.

● vm.swappiness was set to 0

● OS had about 200MB of memory available for itself 
and appeared to spend 100% of one core's time in IO 
wait.
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One more story...
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One more story...
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Conclusion

● Clearly define the problem

● Understand what the tests are before testing

● It is possible to use similar techniques to tuning for 
long term monitoring

● Sometimes the results you get are not what you 
expected.

● Software developers are bad at exposing performance 
metrics for use by external software.

● DOCUMENT, DOCUMENT, DOCUMENT!
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Questions

Fragen
jautājumi

質問pytania

vragen

kysymykset

питання
вопросы

spørgsmål domande

preguntas

otázky
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Source Code

● Scripts and template used are available on GitHub
● https://github.com/red-tux/zbx-apache
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The test environment (More details)

Storage 
Server 

Physical System
(desktop)

Infiniband

GigE

Router/Firewall
100Mbit 

Hypervisor 1
(Terry)

Hypervisor 2
(Sherri)

Zabbix Server
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The test environment (More details)

● Hypervisors are Red Hat Virtualization 3.3 (RHEV)
● Guests are RHEL6

● Test server is configured with 2GB of RAM and 2 CPU cores

● Storage for guests is via iSCSI over Infiniband

● Switch and Firewall are small Enterprise grade Juniper 
equipment. 

● Main Router/Firewall has 100Mbit interfaces
● All networks are VLANed
● Hypervisors are LACP bonded to the internal network
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The test environment (More details)

● Test page is a simple “Hello world” with a small 
embedded graphic.  Two connections equals one page 
load.

● Apache was configured to use the aforementioned 
logging script

● JMeter was used to generate the client test loads

● Zabbix was configured perform a web test as well to 
track response times from the Zabbix server.
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